Muscle Recovery: Essential to Your Next Workout | Yasser Kashef

Muscle Recovery: Essential to Your Next Workout

Originally published on HVMN by Nate Martins.

The moment every athlete wants to avoid.

POP!

A muscle gives at the gym or on the track, leading to weeks of rehab. Sometimes it’s not even a single moment, but rather, countless hours of overuse that leads a muscle to strain or tear.

To avoid rehab, athletes need to be thinking about pre-hab. Get ahead of an injury before it happens.

Muscle recovery should be part of every training plan (specifically post-workout). But there are multiple strategies athletes can employ that lead to muscle health–even things like diet can impact how your muscles recover. Knowing what to do, and when to do it, can help avoid the injuries that’ll set you back weeks.

Muscle Recovery

Why is Recovery Important?
An important goal of every training session is to break down muscle. Without recovery, a significant portion of that work might be a waste of time. So, what exactly happens during recovery? That’ll depend on the person and activity, but generally, four different things are happening while you’re resting.

Synthesis of protein: This is what leads to muscle growth. During recovery is when the most muscle is built, because muscle protein synthesis increases by 50% four hours after a workout (like resistance training).1

The rebuilding of muscle fibers:
Microtears in muscle fibers are a normal part of the exercise, happening when we put a strain on our muscles. Recovery allows these fibers to heal and become stronger during that process.

Fluid restoration: We sweat (and lose a lot of fluid through exhaled air).2 Hydrating before, during and after a workout is important, because these fluids help deliver nutrients to organs and muscle through the bloodstream.

Removal of metabolic waste products: Acids (via that pesky little proton associated with lactate) accumulate during a workout, and recovery gives the body time to restore intramuscular pH and reestablish intramuscular blood flow for oxygen delivery (among other things).

While you’re resting, your muscles kick into overdrive.

Recovery can be attacked in several ways–some may be surprising because they don’t directly target the muscles themselves. By approaching recovery through a few different avenues, it can be optimized.

Resting Your Way to Recovery

Rest should be accounted for in any training program.

Sleep: A Necessary Reset

On its face, sleep should be the easiest way to recover. One study found that lack of sleep can lead to muscle degradation.23 But many find it difficult to get the ideal seven-to-nine hours per night.

Sleep improves other facets of health that tangentially affect muscle recovery; the central nervous system (CNS) also recuperates during sleep, which is important for muscles, because the CNS triggers muscle contractions and reaction time. Hormones like cortisol and testosterone, which produce protein synthesis, are also working while we sleep.

To help optimize sleep, it’s important to set a routine.

Our screens can negatively impact sleep,24 so 60 – 90 minutes of screenless time before bed can do wonders. The blue light emitted from our devices tricks the brain into thinking it’s daytime and we need to be awake, decreasing our natural melatonin.


It’s also important to create an optimal environment for sleep. Things like blackout curtains, a cooler temperature setting in the bedroom, or a quality mattress can all encourage better, more restful sleep.

Rest Days: Muscles Don’t Take Breaks, But You Should

On a much smaller scale, what’s happening during sleep is also happening on rest days. Work rest days into your training program because they give the body time to repair tissues that have been broken down.25

Depleted muscle energy stores, micro-tears, fluid loss–all the things that happen during a workout need time to recuperate and grow stronger.

Recovery time depends on your specific routine. Runners can have an especially difficult time doing this. For highly active runners who log miles six days per week, they should also incorporate recovery runs. About half of these runs should be at recovery pace, a slower less-strenuous pace that allows the body to recycle lactate as it’s produced. By increasing blood flow, recovery runs may actually accelerate the recovery process.

Also try to avoid intense workouts or hard runs on back-to-back days. Complete rest days vary by person, but a good goal is one or two rest days every week or ten days. Injury-prone athletes may increase the number of complete rest days during this period.


Recovery


Recovery is the First Step to Better Training

Recovery takes time and dedication; it often gets overlooked in workout schedules because it isn’t accounted for.

Active recovery, sleep, diet, and supplements like HVMN Ketone can be used to kickstart the recovery process and make training more effective.

The best training starts with mindful recovery to help muscles rebuild for the next training session. This, ultimately, can improve training by putting your body in the best position to perform. The process of muscle breakdown happens during exercise; immediately after, the process of muscle restoration and strengthening begins–you could be compromising gainful training by skipping these all-important techniques to help the body rebuild.

References :


Yang C, Jiao Y, Wei B, Yang Z, Wu JF, Jensen J, Jean WH,4, Huang CY, Kuo CH. Aged cells in human skeletal muscle after resistance exercise. Aging (Albany NY). 2018 Jun 27;10(6):1356-1365.

MacDougall JD, Gibala MJ, Tarnopolsky MA, MacDonald JR, Interisano SA, Yarasheski KE. The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol. 1995 Dec;20(4):480-6

Mitchell, J W. Nadel, E R. Stolwijk, J. A. J. Respiratory water losses during exercise. Journal of Applied Physiology 32(4):474-6. May 1972

Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997 Jul;273(1 Pt 1):E122-9

Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD. Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc. 2006 Apr;38(4):667-74

POST REPLY